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A power-flow graph model is introduced for the analysis of the mechanical
isolation system. Based on this method, the relationships of the velocity and force
at both ends of each component of the isolation system, including machine,
isolator and foundation, are expressed by the two-way power-flow model. The
transmissions of both velocity and force between each component are displayed
in the graph model of the isolation system, which can be generated by directly
assembling each of the components. In addition, the transmissibility of force and
velocity can be calculated according to the assembled graph model. In this
investigation, one velocity isolation system and two force isolation systems are
studied. Finally, an isolator modelled on a series connection of a MDOF
mechanical system and an SDOF model of a flexible foundation are examined to
illustrate the advantage of this method in practical use.
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1. INTRODUCTION

A vibration isolator is usually installed between a dynamic system and an
excitation source to protect the system from undesirable vibration. The two
primary purposes in using the isolators are: (1) to reduce the acting force
transmitted from the excitation force generated by an unbalanced revolution of
the machine, called a force isolation system, and (2) to avoid the damage of a
sensitive instrument on a vibrating foundation, called a velocity isolation system.
The design objective is to obtain a lower force transmissibility for the former
system and a velocity (or displacement acceleration) transmissibility for the latter
system. Since a dynamic coupling between the machine, isolator and foundation
exists, all of the components in the total system are considered simultaneously in
the analysis, which may work well when the configuration of the isolator is very
simple [1]. However, certain commonly used isolators, such as natural rubber or
rubberlike material, are rationally modelled in practice as a series of connected
multi-degree-of-freedom (MDOF) dynamic systems [2]. For these isolators, the
computation is quite complex. In the classical method, the total system was
modelled as a set of transfer matrices. The transmissibility can be computed by
successive multiplication [3]. Munjal et al. developed a standard sub-program and
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an approximation method based on a circuit analogy to allow the computation
work to be more suitable for computer calculation but the processes are still
complicated [4, 5]. Paipetis and Vakakis derived the analytic solution of a uniform
isolator. However, it is difficult to apply that scheme to the analysis of the total
isolation system [6]. In fact, the isolator generally designed under the given
condition of the machine and the foundation is fixed. If the interaction between
the machine and isolator as well as the isolator and foundation can be known, the
isolation system would be analyzed and designed more efficiently. Based on this
approach, Busch-Vishniac proposed that at least one of the system components
must be represented by its impedance. However, her method of analysis lacks an
algorithm calculation [7].

In this article, a two-way power-flow model was introduced to deal with this
problem. The relationship between the force and velocity at each component is
established by a power-flow graph. From the graph model, we can see the
interaction between each connected component. The total system can be
configured by directly assembling each of the components. In addition, a closed
form solution of the force and velocity transmissibility of the isolation systems can
be calculated according to the graph model of the total isolation system. Finally,
an isolator with a uniform multiple layered structure and a single-degree-of-free-
dom (SDOF) flexible foundation are examined to realize its feasibility.

2. POWER-FLOW MODEL

When an isolator is used to support a rotary machine with a periodical
unbalanced force on the foundation, as shown in Figure 1, this system can be

Figure 1. (a) Physical model and (b) variables definition of an isolation system.
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Figure 2. Power-flow graphical representation for (a) equation (5), and (b) equation (6).

modelled as a connection of three parts—a mass for the machine, a dynamic
system for the isolator and a foundation. For the first case, Case I, a system with
rigid foundation is considered. Based on Newton’s law, the dynamic equation of
the machine is given by

fext (t)− ft (t)=mm
dvm (t)

dt
, (1)

where fext (t) and ft (t) are the excitation force and the acting force on the machine
from the isolator, mm is the mass of the machine, and vm (t) is the velocity of the
machine. Assume that the machine is fixed on the top of the isolator. Then, the
velocity of the machine is equal to that of the top of the isolator, denoted by vt (t).
If fext (t) and vt (t) are given and assigned to the input variables, the variables fm (t)
and vm (t) should be a function of both input variables expressed as

ft (t)= fext (t)−mm
dvt (t)

dt
, vm (t)= vt (t). (2, 3)

Assuming a periodical excitation force with frequency v, the steady state response
of the force ft (t) and velocities vm (t) and vt (t) should also be periodical and have
the same frequency, but different phase angles. Let the excitation be given as the
real part of

fext (t)=Fext ejvt, (4)

where Fext is the complex amplitude with units of force containing information
about the phase angle, j is defined by j= (−1)1/2, ft (t), vm (t) and vt (t) may also
be expressed in the same form as Equation (4). Equations (2) and (3) can be
rewritten as

Ft =Fext −jvmmVt , Vm =Vt , (5, 6)

where Fm , Vm and Vt are the complex amplitude of ft (t), vm (t) and vt (t). These Fext ,
Vt , Ft and Vm are defined as the power-flow variables with respect to the dynamic
system of the machine model. If Fext and Vt , are selected as the input variables,
Ft and Vm should be a function of the input variables defined as the output
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variables. Equations (5) and (6) can be represented as a power-flow graph, as in
Figures 2(a) and (b). Then, a two-way power-flow graph model of the mass
system can be formed by the combination of (a) and (b) in Figure 2 as shown in
Figure 3.

Assume the isolator is modelled as a linear dynamic system. The steady state
response of the velocity and force at the top and bottom of the system are also
periodical with the same frequency as an excitation. If the complex amplitude of
the acting force on the top Ft and the velocity of the bottom of the isolator Vb

are selected as the input power-flow variables, the complex amplitude of the acting
force on the bottom Fb and the velocity of the top of the isolator Vt can be
expressed as

Fb =TRf,t,bFt +ZbVb , Vt =YtFt +TRv,b,tVb , (7, 8)

where TRf,t,b is the complex force gain of the isolator from the top to the bottom
and TRv,b,t is the complex velocity gain of the isolator from the bottom to the top
of the isolator defined as

TRf,t,b =
Fb

Ft bVb =0

, TRv,b,t =
Vt

Vb bFt =0

. (9, 10)

Zb and Yt are the impedance and the mobility of the isolator at the bottom and
the top defined as

Zb =
Fb

Vb bFt =0

, Yt =
Vt

Ft bVb =0

. (11, 12)

The two-way dynamic flow model of the isolator can be configured by equations
(7) and (8) illustrated in Figure 4. From Figures (3) and (4), one can see that the
variables and directions of the power-flow model of the machine at the lower end
are the same as that of the isolator at the top end. Thus, both power-flow models

Figure 3. Two-way power-flow model of the machine component.
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Figure 4. Power-flow model of the isolator component.

can be connected directly to form the combined model. In the same way, the
two-way power-flow models of the foundation can be constructed according to
their dynamic characteristics. Since the foundation is rigid, zero displacement and
velocity response should be maintained. The boundary conditions are given by

Fd =Fb , Vb =Vd =0, (13, 14)

where Fd and Vd are the complex amplitude of the reaction force and velocity of
the foundation. If the foundation is flexible with mobility Yd , called Case II, the

Figure 5. Power-flow model of the foundation: (a) rigid condition, and (b) flexible condition.
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Figure 6. Power-flow model of the Case I system.

boundary condition in equation (14) is changed to

Vb =YdFb . (15)

According to equations (13)–(15), the two-way power-flow models of the
foundation with respect to the flexible and rigid condition can be configured as
Figures 5(a) and (b). The power-flow model of the total system including machine,
isolator and foundation can be constructed by the series connection of the
power-flow model of these three subsystems. For the Case I system, the power-flow
model can be reduced since the power-flow is induced by a zero velocity input from
the foundation, as shown in Figure 6. If the flexible foundation is considered, the
power-flow model can be configured by the same method. Figure 7 illustrates the
total power-flow model of the Case II system.

In addition to isolating an excitation force from the foundation, the isolator may
also be typically used to isolate an instrument from a vibration foundation, such
as Case III shown in Figure 8. In the same way, the two-way power-flow model
may be configured as Figure 9.
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3. TRANSMISSIBILITY FORMULATION

After the power-flow model is configured, the force and velocity transmissibility
of these systems can be calculated by the model reduction method of gain formula
[8] expressed as

G=

s
i

PiDi

D
, (16)

Figure 7. Power-flow model of the Case II system.
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Figure 8. Mechanical model of the Case III system.

where G is the transfer function, Pi is the path gain of the ith forward path, D
is the determinant of the graph, and Di is the cofactor of the ith forward path
determinant of the graph with the loops touching the ith forward path removed.
The determinant of a graph is defined by

D=1−(sum of all individual loop gains)

+(sum of gain products of all possible combinations of two non-touching loops)
−(sum of gain products of all possible combinations of three non-touching loops)

+ . . . (17)

When a rigid foundation is considered, there is only one closed loop in the graph
model of the total system. The force transmissibility from Fext to Fb can be
calculated by the model reduction method or the gain formula. The result is

TR1,m,b = b TRf,t,b

1+ jvmmYtb. (18)

For the Case II system, the force transmissibility TR1,m,b,f is defined by the ratio
of the amplitude of Fext to Fb . From Figure 7, one can see that there are three
counter-clockwise loops in the power-flow model. The number of the forward path
from Fext to Fb is only one. The forward path gain is TRf,t,b . Based on the gain
formula, the transmissibility leads to

TR2,m,b = b TRf,t,b

1+ jvmm (Yt +YdTRf,t,bTRv,b,t −YtZbYd )−ZbYdb. (19)

From Figure 7, it is known that the force transmissibility from Fext to Fd should
be equal to equation (18). The transmissibility from Fext to Vb is =Yd =TR2,m,b .

The velocity transmissibility of the Case III system, TR3,d,m , is defined by the
amplitude ratio of Vm by Vd . There is only one closed loop and one forward path
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Figure 9. Power-flow model of the Case III system.

in the model shown in Figure 9. Based on the same process, the transmissibility
can be calculated as

TR3,d,m = b TRv,b,t

1+ jvmmYtb. (20)

4. ANALYSIS OF THE ISOLATOR AND FOUNDATION

Assume that the isolator is modelled as an n series connection of identical
mechanical subsystems, as illustrated in Figure 10. For each layer, the subsystem
includes one mass series to a parallel connection of a spring and a damper. If the
force and velocity of each component in the ith subsystem from the base are
defined as Figure 11(a), the dynamic equations expressed by the complex
amplitude of these force and velocity variables are given by

Fi−1 =Fi −jvmVi , Vi =Vi−1 +
Fi−1

0c−
k
v

j1
. (21, 22)

According to equations (20) and (21), the two-way power-flow model of the ith
subsystem can be formed, as shown in Figure 11(b). Thus, the power-flow model
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Figure 10. Mechanical model of the MDOF isolator.

of the isolator can be formed by a series connecting the power-flow model of each
subsystem from the bottom to the top. The constructed power-flow model of the
isolator should form a ladder shape having 2n transverse flows with alternating
direction. By the gain formula, only one forward path follows the direction of the
power-flow from Ft to Fb . The path gain of this forward path is 1. Moreover, there
are C(n, 2) closed loops in the model, where C is the selection function. All loops
are touching the forward path. As shown in Appendix A, the force complex gain
of the isolator leads to

TRf,t,b =0s
n

i=0

C(n+ i, 2i)Li1
−1

, L=−
v2m

jvc+ k
. (23, 24)

The complex transmissibility from Vb to Vt can be computed by the same
formula. The number of the forward path is one and the gain of the forward path
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is also 1. So the velocity complex gain TRv,b,t is equal to the force complex gain
TRf,t,b expressed as

TRv,b,t =TRf,t,b . (25)

The driving mobility at the top of the isolator, defined in equation (12), can also
be calculated by the gain formula. However, there are n forward paths from the
force Ft to the velocity response Vt . Each gain of the forward paths is identical.
For the forward path passing through the ith left to right transverse path counted
from bottom, the C(i−1, 2) closed loops are not touching the forward path.
According to Appendix B, the mobility at the top is given by

Yt =

s
n−1

i=0

C(n+1, 2i+1)Li

0c−
k
v

j10s
n

i=0

C(n+ i, 2i)Li1
. (26)

By a similar process, the driving impedance at the bottom of the isolator leads to

Zb =

−jvm s
n−1

i=0

C(n+1, 2i+1)Li

0s
n

i=0

C(n+ i, 2i)Li1
. (27)

Figure 11. (a) Variables definition, and (b) power-flow model of the ith subsystem of the MDOF
isolator.
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Figure 12. (a) Mechanical model, and (b) power-flow model of the SDOF foundation.

If the flexible foundation of Case II is modelled as an SDOF mass–spring–dash-
pot component, as illustrated in Figure 12(a), the two-way power-flow of the
foundation can be configured by the same scheme shown in Figure 12(b). The
mobility of the foundation leads to

Yd =
v

cdv+j(v2md − kd )
. (28)

5. CONCLUSIONS

In this study, the two-way power-flow method has been proposed to express the
transmission of the force and velocity of each component in the isolator systems.
The interaction between the machine and isolator, as well as the isolator and
foundation, was also illustrated in the graph model. Moreover, the analytical
solutions of the force and velocity transmissibility were calculated based on the
gain formula. The solution of the three cases of the isolation systems, including
the force isolation systems with rigid and flexible foundations subject to a
periodical excitation from the machine and the velocity isolation system subject
to foundation vibrations, have been investigated. Finally, the closed form
solutions of these isolation systems with a MDOF series mechanical model of the
isolator and an SDOF mechanical model of the foundation were derived. The
results show that this method has been successfully provided for the analysis of
an isolator in unidirectional motion. Based on this concept, advance research for
more complex systems will be extended in the near future.
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APPENDIX A

Based on the gain formula shown in equation (16), the force complex gain can
be expressed as

TRf,t,b =
1
D0

, (A1)

where

D0 =1+ s
n

i2 =1

s
i2

i1 =1

L+ s
n

i4 =2

s
i4

i3 =2

s
i3 −1

i2 =1

s
i2

i1 =1

L2 + s
n

i6 =3

s
i6

i5 =3

s
i5 −1

i4 =2

s
i4

i3 =2

s
i3 −1

i2 =1

s
i2

i1 =1

L3

+ s
n

i2n−2 = n−1

s
i2n−2

i2n−3 = n−1

s
i2n−3 −1

i2n−4 = n−2

s
i2n−4

i2n−5 = n−2

. . . s
i3 −1

i2 =1

s
i2

i1 =1

Ln−1 +Ln,

(A2)

where

L=−
v2m

jvc+ k
. (A3)

Each complex summing term in equation (A2) can be calculated layer by layer.
The results become

D0 =1+
(n+1)n

2
L+

(n+2)(n+1)n(n−1)
4

L2

+
(n+3)(n+2)(n+1)n(n−1)(n−2)

6
L3

+· · ·+ (2n−1)Ln−1 +Ln. (A4)
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Equation (A4) can be rewritten as

D0 = s
n

i=0

C(n+ i, 2i)Li. (A5)

APPENDIX B

The mobility at the top is given by

Yt =

s
n

i=1 0c−
k
v

j1
−1

Nni

D0
, (B1)

where

Nni =1+ s
i−1

i2 =1

s
i2

i1 =1

L+ s
i−1

i4 =2

s
i4

i3 =2

s
i3 −1

i2 =1

s
i2

i1 =1

L2 − s
i−1

i6 =3

s
i6

i5 =3

s
i5 −1

i4 =2

s
i4

i3 =2

s
i3 −1

i2 =1

s
i2

i1 =1

L3

+ s
i−1

i2i−4 = i−2

s
i2n−4

i2i−5 = i−2

s
i2n−5 −1

i2i−6 = i−3

s
i2n−6

i2i−7 = i−3

. . . s
i3 −1

i2 =1

s
i2

i1 =1

Li−2 +Li−1,

= s
i−1

r=0

C(i+ r−1, 2r)Lr. (B2)

Substituting equation (B2) into equation (B1) gives

Yt =

s
n−1

i=0

C(n+ i, 2i+1)Li

D00c−
k
v

j1
. (B3)


